Course Title: Math Applications in Water Treatment

Course Hours: 21 (2.1 CEUs)

Course Description:

This course focuses on math concepts related to water treatment plant operation and applies these concepts to work-related math problems. Operators practice solving math problems while getting step-by-step instructions. This course covers topics that operators encounter on the job. It does not attempt to cover the topics of any state certification exam.

Course Objectives:

Upon completion of this course, participants will be able to perform math calculations typically used in water treatment plant operation. Course objectives include:

- Solve problems related to calculating the flow rate, dose, and feed rate of chemicals
- Calculate acre-feet as a unit for volume
- Calculate needed doses for algae control
- Calculate the amount of liquid polymer needed to achieve a desired dose
- Estimate the needed alum dose
- Calculate needed doses based on chemical strength
- Calculate the detention time of a flash mixer and flocculation tank
- Estimate the needed lime dose for alkalinity adjustment
- Calculate the surface loading of a clarifier
- Calculate weir loading rate
- Estimate the flow rate through a filter
- Estimate unit filter run volume
- Estimate backwash volume
- Estimate chlorine dose, demand, and residual
- Estimate the needed chlorine amount based on a given strength of chlorine solution
- Apply the concept of breakpoint chlorination and decide whether the chlorination in a water is beyond breakpoint
- Determine whether the water in a system is corrosive
- Estimate average chlorine usage per day based on collected data
- Estimate how long a stored amount of chlorine will last on average, in days
- Convert units from metric to US customary and be familiar with the relationship between comparable units in each system
- Convert temperature from degrees Celsius to degrees Fahrenheit
- Calculate molarity and normality in relation to calculating alkalinity
- Use titration information to calculate the three components of alkalinity
- Calculate most probable number

Course Outline:

1) Basic Math Concepts (250 minutes)
a. Numbers and Operations
b. Order of Operations
c. Basic Algebra
d. Percentages
2) Intermediate Math Concepts (290 minutes)
a. Units
b. Area
c. Volume
d. Mass and Weight
e. Density and Specific Weight
f. Concentration
g. Velocity and Flow Rate
h. Force and Pressure
i. Work, Head, and Power
j. Metric System
3) Advanced Math Concepts (320 minutes)
a. Pumps
b. Evaluating Pump Performance
c. Analyzing and Presenting Data
d. Describing Data or Results
e. Moving Averages
f. More Applications of Graphing and Charting
g. Regression Analysis (Prediction Equations, Trends, and Correlations)
4) Overview of Math Applications in Water Treatment (10 minutes)
a. Introduction
b. Watch 1 course video
5) Basic Concepts (20 minutes)
a. Measure flow rate
b. Dose and mass rate
c. Work through example problems 1-2
6) Reservoir Management (20 minutes)
a. Learn about acre-feet
b. Work through example problems 1-5
7) Coagulation and Flocculation (30 minutes)
a. Watch 1 course video
b. Work through example problems 1-6
8) Sedimentation (35 minutes)
a. Watch 1 course video
b. Work through example problems 1-9
9) Filtration (35 minutes)
a. Watch 1 course video
b. Learn about conventional filtration
c. Work through example problems 1-6
10) Disinfection (30 minutes)
a. Learn about disinfection
b. Complete example problems 1-7
11) Corrosion (15 minutes)
a. Learn about corrosion and how it occurs
b. Learn about the Langelier Index
c. Work through example problem 1
12) Plant Operation (10 minutes)
a. Learn about basic concepts related to operating a water treatment plant
b. Work through example problems 1-2
13)Laboratory Procedures (80 minutes)
a. Learn about units and unit conversions
b. Work through example problem 1-5
c. Learn about molar concentration (molarity)
d. Work through example problems 6-7
e. Learn about normal concentrations (normality)
f. Work through example problem 8
g. Learn about alkalinity
h. Work through example problems 9-11
i. Learn about most probable number
j. Work through example problems 12-15
13) Final Exam (120 minutes)

Course Format: This course will be delivered online.
Assessment Methodology: Cumulative online assessment (final exam, 120 minutes)
Prerequisites: None
Textbook: None
Recommended Reading: "Water Treatment Plant Operation," Volume 1, Seventh Edition. Office of Water Programs, www.owp.csus.edu

